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On spiral coordinates with application to 
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We introduce a possibly new system of orthogonal curvilinear coordinates, whose 
coordinate curves are logarithmic spirals in the plane, supplemented by a cylindrical 
coordinate for three dimensions. It is shown that plane spiral coordinates form a one- 
parameter family, with equal scale factors along the two orthogonal coordinate curves, 
and constant Christoffel symbols. The equations of magnetohydrodynamics, which 
include those of fluid mechanics, are written in spiral coordinates and used to find a 
state of magnetohydrostatic equilibrium under a radial gravity field and spiral 
magnetic field, and to solve the equation of non-dissipative AlfvCn waves in a spiral 
magnetic field in terms of Bessel functions. This exact solution specifies the evolution 
of wave perturbations (velocity and magnetic field) and energy variables (kinetic and 
magnetic energy densities and energy flux) with distance, for waves of arbitrary 
frequency. Both the frequency and the spiral angle are varied in plots of the waveforms, 
which show the effect on Alfven wave propagation of three simultaneous effects: 
change in the mass density of the medium and in the strength and direction of the 
external magnetic field. 

1. Introduction 
We introduce a system of plane orthogonal spiral coordinates; it can be generalized 

to three dimensions, like cylindrical spiral coordinates, by adding a third Cartesian 
coordinate, orthogonal to the plane of the first two. Although this coordinate system 
is fairly simple, we have no knowledge of its use in the literature; for this reason, we 
shall discuss in some detail the properties of this new curvilinear orthogonal coordinate 
system. Spiral coordinates can be arrived at in at least two distinct but equivalent ways: 
(a) physically by considering plane potential spiral flow, due to the superposition of a 
source/sink and a vortex, for which the equipotentials and streamlines are orthogonal 
logarithmic spirals ; (b) geometrically by noting that the logarithmic spiral is the curve 
making a constant angle q4 with all radial lines, and thus an orthogonal set consists of 
the logarithmic spirals making an angle 7tl2-94 with all radial lines. 

Both approaches show that spiral coordinates are curvilinear and orthogonal, and 
that they form a one-parameter family, i.e. there is one set of plane curvilinear 
orthogonal logarithmic spiral coordinates for each value of one parameter, e.g. (a) 
geometrically, the angle q4 one family of coordinate curves makes with the radial 
direction, (b) physically this corresponds to tan$ = r/Q, the ratio of the strength of 
the vortex to the strength of the source/sink. Polar coordinates correspond to the case 
of radial coordinate curves $ = 0 or no vortex r = 0; thus they are equivalent to a 
particular case of spiral coordinates, but they are redefined here so that the two scale 
factors are equal. Another particular case, for which the two scale factors are obviously 
equal, is equilateral spiral coordinates, with coordinates curves all making the same 



154 L. M .  B. C. Campos and P. J .  S.  Gil 

angle # = n/4 = n/4- # with the radial direction, i.e. a source of the same strength as 
the vortex, Q = r. It should be emphasized that all spiral coordinates (for any value 
of or tan# = T/Q) have the same scale factor along the two coordinate curves; this 
is the case for all conformal coordinate systems (see the Appendix). 

When plane curvilinear orthogonal spiral coordinates are generalized to three 
dimensions by adding a third, Cartesian, coordinate orthogonal to the plane of the first 
two, the third scale factor is unity, and is distinct from the other two. The extension 
from plane spiral to cylindrical spiral coordinates is straightforward, and we shall 
restrict ourselves to the former, e.g. when writing the general equations of non- 
dissipative magnetohydrodynamics in spiral coordinates. The equations of fluid 
dynamics, or magnetofluid dynamics, in spiral coordinates should be appropriate to 
the solution of problems with spiral geometry, e.g. flow in certain types of centrifugal 
turbomachinery, phenomena in spiral galaxies or diffusion along spiral trajectories. We 
give as an example the propagation of waves along a spiral, such as would occur for 
AlfvCn waves in a spiral magnetic field. In this case the external magnetic field decays 
in magnitude along a logarithmic spiral, so as to conserve magnetic flux; the velocity 
and magnetic field perturbations are parallel and transverse, and thus lie along the 
orthogonal logarithmic spiral. The equations of magnetohydrodynamics are exactly 
linear in this case; although the problem is one of wave propagation with varying speed 
and direction, it depends only on time and one spiral coordinate, and it can be solved 
exactly in terms of Bessel functions. 

Spiral coordinates are relevant to the geometry of the solar magnetic field, which 
decays in strength with distance and changes in direction along Parker’s spiral; 
although the latter is not a logarithmic spiral, the angle Parker’s spiral makes with 
radial lines varies slowly, i.e. on a lengthscale much larger than the local wavelength. 
For such wavelengths, Parker’s spiral can be replaced locally by a logarithmic spiral. 
This is simpler than trying to use curvilinear coordinates because the orthogonal curves 
are not Parker’s spirals, and the scale factors are more complicated than for a 
logarithmic spiral, leading to a problem which is more cumbersome analytically. For 
wavelengths smaller than the lengthscale of change of spiral angle, the two approaches 
are physically equivalent, and thus we follow the mathematically simpler method of 
using spiral coordinates as an approximation. This approximation does not prevent us 
from studying the effects of the change in magnitude and direction of propagation 
speed on wave reflection, leading to : (i) a different waveform for velocity and magnetic 
field perturbations, implying that equipartition of kinetic and magnetic energies is 
violated; (ii) non-conservation of the energy flux, and changes in the spectrum with 
distance. We do not attempt to model other features of the solar wind, e.g. the presence 
of a background flow. 

2. Families of curvilinear orthogonal logarithmic spiral coordinates 
One approach to plane spiral coordinates (we use this as an abbreviation of the exact 

designation in the title of this section) is to consider the plane spiral potential flow, for 
which the complex potential is specified by the superposition of a source Q > 0 or sink 
Q < 0 of strength Q and a vortex of circulation I‘ (clockwise for r> 0 and 
counterclockwise for I‘ < 0) : 

The potential @ and stream function Y in polar coordinates (r,  O) ,  

Az) = {(Q-ir)/2n}logz. (1) 

f= @+iY, z = rei*, (2 a, b) 
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show that both the equipotentials @ = const. and streamlines Y = const. are 
logarithmic spirals : 

Since they are orthogonal, they form a curvilinear orthogonal coordinate system 

27c@ = Qlogr+r0,  27cY = Qe-rlogr,  (3a,  b) 

a = 0-klogr, /3 = logr+kB, (4a, b) 

where (i) a,P are designated spiral coordinates because the curves a = const., 
P = const. are orthogonal logarithmic spirals 

which can be chosen freely, so that we have a family of spiral coordinates. 

coordinate curves a = const. in (4a),  make a constant angle $ with all radial lines 
The preceding results can be given a purely geometrical interpretation: (i) the 

( r  d8/dr), = k = tan $, ( 6 4  

and hence are logarithmic spirals; (ii) the coordinate curves P = const. in (4b) are also 
logarithmic spirals 

(6 b) 

which make an angle n/2 - $ with all radial lines and are orthogonal to the coordinate 
curves a = const. ; (iii) we have a distinct member of the family of spiral coordinates for 
each angle $, which is equivalent to 

(rdO/dr)p = - l /k = -cot$ = tan(z/2-$), 

r / Q  = tan$, (7) 

the ratio of vortex and source/sink strengths. In the particular case of a source/sink 
alone (i.e. no vortex r = 0), we obtain a system equivalent to polar coordinates: 

k = O :  a = e ,  P=logr ,  @ a ,  b) 

with the radial coordinates re-defined, so that the arclength 

(dl)' = (dr)'+ r2(d0)', 
has the same scale factor 

(9) 

(dl)' = r2{(d log r)' + (do)'} = r'{(da)' + (dp)'} (10) 

Another particular case is equilateral spiral coordinates, when both sets of 
in the a- and P-directions. 

coordinates curves make the same angle with all radial lines: 

$ = 7 ~ / 4  = ~ / 2 - 4 ,  k = 1, lQl = Irl, (1 1 a-c) 

corresponding to spiral flow with a source/sink of the same strength, in modulus, as 
the vortex. In this case, 

we should expect the scale factor to be same in both directions: 

a = 8-logr, /3 = O+logr, (12a, 6 )  

(13) (dl)' = r'{(d log r)' + (do)'} = ir' {(da)' + (dp)'}, 

although s = r in (10) and s = +r2 in (13). We note that the scale factor is the same 
in both coordinate directions for all spiral coordinates, as must be the case for any 
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orthogonal coordinate system arising out of a conformal mapping (see the Appendix). 
We calculate the value of the scale factor as follows: (i) first we invert the 
transformation (4a, b) between polar and spiral coordinates : 

(1 +k2)(6,logr) = (a+kp,p-ka>;  (14) 

(dl)' = {P/( 1 +k2)}  [(da)' + (dp)']. 

(ii) substituting in the arclength in polar coordinates (9), we obtain the arclength in 
spiral coordinates : 

(15) 
Note that (15) reduces to (10) for k = 0, and to (13) for k = 1. 

The general Riemannian two-dimensional curvilinear arclength is 

(do2 = g,,(da)' + 2g,/j da  dp  + gp/j(dp)2, (16) 

where g,, designates the metric tensor; comparing (16) with (15) it follows that the non- 
diagonal elements vanish, gap = 0, which provides a third proof that spiral coordinates 
are orthogonal. The diagonal elements specify the scale factors 

g,, = gpp = ?/(I +k2) = s2, 

s = Y/( 1 + k2)1/2 = (1 + k2)-l/' exp {( p- ka)/( 1 + k2)} 

(17) 

(18) 

and they coincide, so that we have the same scale factor 

along both coordinate curves. One possible extension from two to three dimensions, 
preserving orthogonality, is to add a third, Cartesian coordinate z : 

(dl)' = s2{(da)' + (dp)'} + (dz)', (19) 

whose scale factor is distinct (namely unity). We designate (a, p, z) cylindrical spiral 
coordinates, because: (i) the coordinate surfaces a, p = const. are cylinders with 
orthogonal spirals as directrices, and generators normal to the plane of the spirals : (ii) 
z = const. is a plane; (iii) the coordinate curves (a = const., z = const.) and (j = const., 
z = const.) are orthogonal spirals in the plane z = const.; (iv) the coordinate curve 
(a = const., = const.) is a straight line, i.e. the common generator of the orthogonal 
spiral cylinders. 

3. Equations of magnetohydrodynamics in spiral coordinates 
Since cylindrical spiral coordinates are a straightforward extension of plane spiral 

coordinates, we concentrate henceforth on the latter, using the following short-hand 
notation for derivatives : 

{F, a, F, F }  = (aF/at, aF/aa, aF/ap} .  (20) 
The fact that spiral coordinates (like all conformal coordinates; see Appendix) have the 
same scale factor along both coordinate curves simplifies the usual invariant differential 
operators, e.g. the gradient 

(21) 
and Laplacian 

(22) 
of a scalar @ = @(a,p). We also have the divergence 

V@ = s-'(e, a,@ + ea aP @) 

v w  = s-2 {a, a, @ + ap ap CP} 
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and Laplacian 

v2 !P = ems-' a, { s - ~  [a,(sY,) + ~,(sYJ]} - e,s-l aP{s-2 [a,(SYP) - a,(sY,)]} 

+e,s-l aP{s-2 [ a , ( s Y ~ ) + a p ( s ~ P ) ] } + e P s - 1 a , { ~ - 2  [a,(sYP)-a,(sY,)]}, (25) 

for a vector Y = Y,e,+ Y,.ep. The notation should be clear, e.g. a, !Pa = aY,/aa. 

1967) that of continuity: 

where p is the mass density, and u is the velocity; in spiral coordinates it reads 

We take as the first equation of fluid mechanics (Landau & Lifshitz 1953; Batchelor 

ap/at + v. (pV) = 0, 

s2p + aa(Sv, p) + aP(svP p) = 0. 

(26) 

(27) 
Since we will be considering non-dissipative waves, in the energy equation, we omit 
thermal conduction, viscosities and electrical diffusivity. Thus the equation of energy, 
in terms of temperature T: 

reads 

in spiral coordinates. 

induction equation, in non-dissipative form (Landau & Lifshitz 1956, 1966) : 

0 = dT/dt = aT/at+(u.V) T, (28) 

sT+v,a, T+v,a,T= 0 (29) 

Since we have omitted the Joule effect in the energy equation, we also do so in the 

aH/at+V A ( H A  V )  = 0, (30) 

(3 1 a7 b) 

whose two components read 

312, + aP(H, up - H~ v,) = 0, sI2, - a p ,  - H~ 0,) = 0, 

in spiral coordinates. 
The set of fundamental equations of non-dissipative magnetohydrodynamics 

includes, besides the preceding ones and the equation of state p = p(p, T ) ,  the inviscid 
momentum equation : 

pa+Vp+(p/41t)Hn(VAH)-pg = 0, (324 

including magnetic and gravity forces. Here the acceleration is defined in curvilinear 
coordinates using covariant differentiation (Schouten 1956), namely for contravariant 
components of the acceleration 

(32b) 
where Vj is the covariant derivative and tlj = a/axj the partial derivative; for physical 
components of the acceleration 

(32 c) 
where the scale factor s is the same for both directions in the case of spiral coordinates 
(or any other system of conformal coordinates: see the Appendix). The acceleration 
consists of local, convective and centripetal terms, the latter involving the Christoffel 
symbols in spiral coordinates, which are given by 

(33 a> 

(33 b) 
Note that for orthogonal curvilinear coordinates with equal scale factors in all 
directions, the Christoffel symbols are logarithmic derivatives of the scale factor ; since 

ai dd/dt = (avi/at) + (Vj v i )  (dxjldt) = tii + 3 aj v i  + rg, 3 vk, 

a, = sai = ti, + vj aj(v,/s) + s-l rik vj v,, 

r a  ua =rP ap =-p PP - - s - la,S = -,qi + P I ,  
P PB - - ra 4 = -r!, = s-*a P s = i /( i  +P) ,  
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the scale factor is an exponential (18) of the spiral coordinates, all Christoffel symbols 
are constant. The property of spiral coordinates of having constant Christoffel 
symbols, would simplify the equations of the gravitational field (Einstein 1916; 
Eddington 1924; Tolman 1934; Synge 1966; Landau & Lifshitz 1966). In the present 
case, it simplifies the centripetal acceleration in the two physical components of the 
equation of momentum in spiral coordinates : 

P W ,  + u,a, v, + " p a p  0,) + P@, up+ k(vp)"/(l+ k2)  

P{sd8+v,a ,v ,+~aap~p>-P{ (~ , ) '+k~,~p} l ( l  +k2) 

+ a,P + W47t) s-l Hp{a,(SHp) - ag(sH,)) - pg, = 0 (34 a)  
and 

+a8p-(p/47t)s-' H,{~,(sHg)-~p(sH,)}-pgp = 0. (34b) 

4. Magnetohydrostatic equilibrium in a spiral magnetic field 
We consider next transverse waves along a spiral magnetic field (figure l), for which 

the external magnetic field is tangent to a spiral, and the velocity and magnetic field 
perturbations are tangent to the orthogonal spiral : 

(35a, b) 

(35 c) 

so that the motion is incompressible only in the case k = 0 of cylindrical waves, and not 
in the case k =k 0 of spiral waves : we still call these waves Alfven waves, since they are 
transversal in the cylindrical case, but emphasize that otherwise these are compressive 
Alfven modes. In the case (35a, b) the equations of induction and momentum are 
linear (the prime denotes derivative with regard to p, e.g. zr' = av/ap): 

using the two assumptions: 

H = B(P) ep + h(P, 0 e,, v = O W ,  0 e,, 
Note that the divergence (23) of the velocity (35b) is given by 

v - o = S-2 a, [ s ~ ( p ,  t)] = Us-2 a, s = - kv/[s( 1 + k q ,  

sh = (Bv)', sd = (pB/47tp) (sh)', (36a, b) 

sd(1 + k 2 )  9 v2, p+ph2/27t = const., (37a, b) 
namely that : (i) the centripetal acceleration is negligible relative to the local acceleration 
(37a); (ii) the total pressure, gas plus magnetic, is constant (37b). We may use (36a, 
b), to obtain the AlfvCn wave equations 

(38a, b) 
for the velocity and magnetic field perturbations respectively. 

Since the properties of the medium do not depend on time, it is convenient to use a 
Fourier decomposition 

s'ii = (,uB/47tp) (Bv)", sh = { ( pB2/47tp) s-'(sh)')', 

v,h(P, t )  = rm F, G(P, w )  e-i"t dw, (39 a, b) 
-m 

and determine the spatial dependence from the solution of the ordinary differential 
equation for the velocity spectrum : 

where we have introduced the AlfvCn speed 
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X 

FIGURE 1. Spiral coordinates in the plane with Alfven waves propagating along the external magnetic 
field, aligned with one spiral, with transverse velocity and magnetic field perturbations, aligned with 
the orthogonal spiral, in the presence of a radial gravity field. 

We need not solve the corresponding wave equation for the magnetic field perturbation 
spectrum : 

because the latter is related to the velocity perturbation spectrum by 

G(P; w )  = (i/w> (s(P))-'d{B(P) F(P; w))/dP, (41 b) 

which follows from the polarization relation (36 a). 
Since the coefficients of the wave equation depend on the background state, we must 

specify the latter; namely the variation of the external magnetic field and mass density 
with distance which satisfies magnetohydrostatic equilibrium. The total magnetic field 
is divergence free (see (23)), as required by Maxwell's equation 

0 = V - H = V . (Bep) = sP(sB)' 

B(P)/b = so/s(P> = exp{-(P-Po)/(l +m, 

(42 4 
if the background magnetic field decays along the spiral on the inverse of the scale 
factor (28): 

where b denotes the magnetic field at coordinate p =  Po, along a spiral of constant a: 

(42 b) 

a = const.: b = B(Po),  so = s(Po) .  (43a, b) 

The mass density (32a) is determined by the condition of magnetohydrostatic 
equilibrium : 

VP + ( p / 4 n )  A (v A B) = pg, (44 4 
together with the equation of state 

p = pRT, (44 b) 
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= B(P)ep: aaP = psg,, apPP = P%p7 (45a, b) 
so we have in fact hydrostatic equilibrium. One way to integrate (45a, b) is to note that 
the differential of pressure, 

(46) 
must be an exact differential. To prove this we note that the gravity field is radial, and 
hence (figure 1) has spiral components 

(47 4 

'P = ('up) 'a+ ('FP) dP = (PSI'') (g,da+gpdp), 

k = tan#: (g,,gp} = g{sin#, -cos#} = (g/(l +k2)1 /2 ) (k ,  - l}. 

Using the scale factor (18) for spiral coordinates together with (47a), in (46), leads to 
the simple result 

- (RT/pg) dp = s(k da - dp)/( 1 + k2)'" = ds( 1 + k2)'/' = dr. 

0 = V - g  = V-(ge,) = r-'i3(rg)/i3r7 

g = go(ro/r) = go(so/s), 

p-' dp = -(go r,/RT) r-l dr, 

p/p 0 -  - (r/ro)-go'o/RT = ( s / s ~ ) - ~ o ~ ~ / ~ ~  = PIPO, 

(47 b) 

The gravity field is also divergence free because we assume it is created by a central 
mass : 

(48 a)  

and thus decays like the inverse of distance: 

(48 b) 

(49 a)  

(49 b) 

or like the inverse of the scale factor (18). Substituting (486) in (47b) we obtain 

showing that in isothermal conditions 

T = const. : 

the gas pressure or mass density are polytrophic functions of radial distance or scale 
factor. 

Another way to obtain this result is to note that the gravity field (48~1, b) is the 
gradient of a potential: 

g = -d#/dr, $(r) = -g,r,logr. (50a, b) 

For a force-free magnetic field and isothermal perfect gas from (44a, b), 

0 =p-'Vp-g/RT = VClogp-#(r)/RT), (51) 
it follows that 

(52) 

implying (49b). It follows from (42b) that the Alfven speed (40b) varies like a power 
of distance: 

with the exponent 

RTlog (PIP,) = #(r) -$(yo) = -go yo log (r/ro), 

A = u(s/sO)-"fl, u = A(s,), (53a, b) 

v = 2 -go ro/2RT = 2 - ro/2L, (54 a> 

which involves the scale height 
L = RT/go. (54 b) 

5. Wave propagation along a logarithmic spiral 
A general method of solution of the linearized MHD equations ($3) for spiral 

coordinates in two dimensions would be to expand in the neighbourhood of a regular 
singularity in powers of ea, ep, e.g. ena, emp - sn7 sm, as a double series with matrix 
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coefficients. In the one-dimensional case considered before ($4), the method simplifies 
to a single series of powers of s, which can be expressed in terms of Bessel functions, 
as we proceed to show. Substituting the external magnetic field (42 b) and Alfven speed 
(53a) into the wave equation (40a) for the velocity perturbation spectrum, we obtain 

(55)  

where the logarithmic derivative of the scale factor (18) is a constant related to the 
spiral curvature : 

( 5 6 4  

and we also introduce a dimensionless frequency 

(56b) 

(57) 

F” - ~(s’/s) F + [ ( s ’ / s ) ~  + (so ~ / u ) ~ ( s / s ~ ) ~ ” ]  F = 0, 

S’/S = (logs)’ = 1/(1 + k2) ,  

52 = (1 + k2)  (so wlav ) ,  

(1 + k2) F - 2( 1 + k2)  F + [ 1 + 5 2 Z ~ 2 ( ~ / ~ ~ ) 2 u ]  F = 0. into 

This second-order differential equation has power coefficients, which can be reduced to 
a quadratic via the change of independent variable: 

(58 a )  5 = (s/so)’ = exp{4P-Po)/(l +k2)L 
and we also make a change of dependent variable with a free parameter p, which we 
may choose at will: 

Performing the change of independent variable (%a),  we confirm that we obtain a 
second-order differential equation with coefficients of second degree : 

(59 a)  

5””+(2p+1-2/v)~I’+{52252+1/v2+p(p-2/v)}I= 0, (59 b) 

W ; w )  = c p m  (58  b) 

(c2d2/dc2+(1 -2/~)5d/d5+ 1/~~+52~<~}{’I(‘(g) = 0, 

and the change of dependent variable (58 b), namely 

allows us to specify one coefficient, e.g. of I’, by choice of p. 
For example, (59b) reduces to a Bessel equation of order q:  

p Y + c Z ’ + ( 5 2 2 p - q 2 ) 1 =  0, (60) 

if we choose for p the value 
p = l / v ,  

in which case it turns out that the order q of the Bessel equation 

q = [p(2/v-p)- l/vZ]l’Z = 0 (61 b) 

is zero. The solution of the Bessel equation is a linear combination, either of Bessel and 
Neumann functions of order zero representing standing waves, or of Hankel functions 
of first/second kinds representing outward/inward propagating waves : 

ZoK) = c, JO(5) + c2 YO(6) = c- f q ’ ( 5 )  + c, Hr’(Q, (62a, b) 

respectively, where C,,C, and C ,  are arbitrary constants of integration, to be 
determined from boundary, asymptotic or radiation conditions. Thus the solution of 
(60) is 

I (6)  = ZO(Q5), (63 4 
and the velocity perturbation spectrum 

F(P; 6) = 6””2o(Q5) 
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4 P ;  w )  = (s/so) Z,(Q(s/s,)”). 

The magnetic field perturbation spectrum follows from (41 b), where we use (42b) and 
(56a): 

and the properties of the differentiation of Bessel functions, to obtain 

G( P ;  w )  = i(B/w) d(F/s)/dp = - i(B/w) (1 + k2)-ls d(F/s)/ds, 

G(P; w )  = i(b/a) (s/s,)”-l Z,(sZ(s/s,)”). 

(65)  

(66) 

This result could have been obtained by reducing (41 a)  to a Bessel equation of order 
1, as done above in (55)-(63) for (40a), with p = 1 - l/v in this case; the use of the 
polarization relation is simpler, and has the further advantage of specifying the 
constant factor ib/a in (66). 

The preceding solutions of the wave equation are exact, in the sense that they are 
valid for all frequencies and distances, and they simplify when the Bessel function has 
either a small or large argument. In the case of a large variable, the asymptotic forms 
of propagating waves : 

H g , 2 ) ( c )  - (1/7~c)~/~exp{ ki(c-nn/2-n/4)}, (67) 

(68 4 
(68 b) 

(69) 

lead to velocity and magnetic field perturbation spectra : 

F - ( 2 / ~ Q ) ~ ’ ~ ( s / s , ) ~ - ” / ~  exp { & i[Q(s/s,)” - 7~/4]), 

G - @/a) (2/nQ)1i2(s/s,)(u/2)-1 exp { k i[Q(s/s,)”- 3n/4]}, 

which are related by 

s 9 s* = s,Q-l’”. . IGI - i(b/a) IF1 (s/s,)’-2, 

at large distance s 9 s*. For a small variable, we use the initial forms of bounded 
standing modes : 

which lead to velocity and magnetic field spectra: 

related by 

at small distances. The general wave field (62a, b) is a linear combination of either of 
two representations, and we have used propagating waves at large distance (68a, b) 
and (69), and standing waves at small distance (71 a, b) and (72), for purely analytical 
convenience, in displaying the results. 

JX) (C/2)”, (70) 

F - s/so, G - i(b/a) (Q/2) ( s / s , ) ~ ” - ~ ,  (71 a, b) 

s << s* : G - i(b/a) (Q/2) (~/s , )~” -~ F, (72) 

An Alfven wave propagates kinetic (68 a)  and magnetic (68b) energies: 

E u = I  2pI F 2  1 > Eh = (p/8n)IG12, (73a, b) 

and in addition to the total energy density 

E = E,+Eh, 
we mention the energy flux, 

D = (p/47c) Bs IF1 PI! 
which together with the former satisfy the energy equation: 
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Equation (75) can be obtained from the induction (36a) and momentum (36b) 
equations, via the usual manipulations. We note the scaling of the mass density (49 b) 
and (54a) : 

which is valid for all distances. For small distances and bounded Jo standing modes, 
the kinetic and magnetic energies scale differently : 

P = P ~ ( ~ / ~ ~ ) ~ ~ - ~ ,  (76) 

E, - Eh - ( S / S ~ ) ~ ’ - ~ ,  

so there is no equipartition, and the energy flux 

D - ( s / s ~ ) ~ ”  =i= EA (77 c)  

does not scale as the total energy multiplied by the AlfvCn speed; the reason is that in 
this case 0 6 1 ,  and the ray approximation does not hold, i.e. the local wavelength 
h = 2na/w is not small compared to the scale so of variation of background properties. 
This condition, 

is met at large distance s 9 s*, and for propagating waves there is equipartition of 
kinetic and magnetic energies : 

(79 a) 

1 6 (s0/h)* = (so w/2na)’ = ( 1  +k2)-2(vS2/2n)2, 

E,, - (s/s0)”-’ - Eh, 

(78) 

and the energy flux is constant, 

and scales like the energy density (79a) multiplied by the AlfvCn speed (53a). 

1 - D - E A ,  (79 b) 

6. Scaling of wave variables and energy density and flux 
The scaling of wave variables, namely velocity and magnetic field, and energies, 

namely kinetic and magnetic, with distance has shown an evolution from a non-ray 
condition s 6 s* when the non-uniformity of the medium reflects waves, to a ray 
condition s % s*, when no further reflection occurs. These reflections of waves by the 
medium depend on frequency, and thus change the spectrum, as we will confirm by 
reconsidering the scaling of wave variables and energies, this time as function of 
frequency. We consider the velocity perturbation spectrum for a wave of frequency w 
at distance s, namely for a bounded Jo standing wave: 

(80 4 
namely we select one term of (62a) by this boundary condition at 5 = 0, or s = 0, or 
r = 0. The remaining constant of integration is determined from the velocity 
perturbation spectrum at initial position s = so: 

(80 b) 

(81 a) 

(81  b) 

4 s ;  0) = C(w> (s/S,>1’2 Jo(fZ(s/s,)”), 

F(s0 ; w )  = C ( w )  J o ( Q )  ; 

thus the velocity (80a, b) and magnetic field perturbation (66) spectra are given by 

F(s; w )  = 4so; w )  (s/so) {Jo(n(s/so>’>/Jo(n)>, 

G(s; 0) = @/a) m o ;  w )  (s/so)’-l {J,(a(s/s,)”)/J,(s2)>, 

for all distances s and frequencies w.  
At large distance s % s*, the wave variables scale in the same way: 

I$(@) F(s,; w ) :  F - w - ” ~ & ( w )  - G, 
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Distance s < s* s % s* 

log EJog s 2 ~ - 2  = - 10.75 v-1=-5.37 
log E,/log s 4 ~ - 2  = - 19.50 v- l=-5 .37  
log D/log s 21, = -8.75 0 

log Fllog s 1 .oo 1 - ~ / 2  = +3.19 
log G/log s 2v-1 = -9.75 ~ / 2 - 1  = -3.19 

TABLE 1. The exponents for the scalings as a function of distance for wave variables 
F, G and energies E, D for bounded standing waves 

and the energy densities like their square: 

s 9 s*: E,, Eh, D - w-l { r ' , ( ~ ) } ~  = Eo. (83) 

At short distance s -4 s*, there are distinct scalings for the velocity and magnetic field 
perturbations of bounded waves : 

s -4 S* : I; - &(w), G - wt;O(w), (84a, b) 

and hence also for the kinetic and magnetic energy densities and energy flux: 

Ev, Eh, - {&(u)}z {l, 02, w>. (8 5 U-C) 

Thus the change in the spectrum from small to large distances is given by 

E,, Eh D N Eo (0, 03, w2}.  (86~-C) 

This is independent of the exponent (54a) which appears in the scaling for distance. 
In order to calculate (54a), we start with the scale height (54b) at the solar corona, 

where the temperature (Athay 1977) is T = 1.80 x lo6 K, and the acceleration due to 
gravity go = 2.74 x lo4 cm s-'. Using R = 8.31 x lo' cm2 s-' K-' for the gas constant 
in c.g.s. units, we obtain a scale height L = 5.46 x lo9 cm at the corona. If we assume 
that the AlfvCn wave starts at the surface of the sun, then the initial distance 
ro = R, = 6.96 x 1O1O cm is the solar radius, and since there the magnetic field is radial, 
$ = 0 or k = 0 in (6a), we have ro = so in (18). Thus the polytrophic index in the density 
law (54a) is n = g o r o / R  T = ro/L = 12.7 and (54a) gives v = 2-n/2 = -4.37. We 
can then find the exponents for the scalings as a function of distance for wave variables 
(68a, b), (71 a, b) and energies (77a, b), (79a), for bounded standing waves at short 
distance s < s*, and also at large distance s %- s* ; these are written in table 1. 

In the case of the solar wind near the Earth, there is a flow with velocity larger than 
the AlfvCn speed. Since we omit this essential feature, we do not claim that the present 
theory is a model of AlfvCn waves in the solar wind: we merely use solar wind data to 
estimate the parameters in the theory, as an illustration of how it can be applied. Our 
treatment also assumes that we can replace Parker's spiral (Parker 1959, 1979), which 
makes an angle with the radial direction which increases with distance, by a logarithmic 
spiral, for which that angle is constant; this is acceptable if the local wavelength h is 
much smaller, h2 + 1 2 ,  than the length scale 1 of change of angle of Parker's spiral. In 
order to estimate the latter we note that the solar magnetic field is radial, $o = 0", at 
the corona so = R ,  = 6.96 x lolo cm, and makes an angle $1 = 56" with the radial 
direction at the Earth, s, = 1AU = 215 R, = 1.50 x 1013 cm. Thus the lengthscale for 
change in the angle of Parker's spiral is 

(87) $0 = 0 : 1 = $ ds/d$ - ($0 + $1) 6 1  - s0>/2($1 - $0) = (81 - so)/2, 
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7 =  1 s 7 = 1 min ~ = l h  7 = 1 day 

q5 = 0": -5.50 x lo3 (7.16) -9.17 x 10 (2.81) -1.53 x 10 (1.10) -6.37 x (0.533) 
4 = 28": - 7 . 0 6 ~  lo3 (7.58) - 1 . 1 8 ~  lo2 (2.97) - 1 . 9 6 ~  10 (1.17) - 8 . 1 6 ~  (0.564) 
4 = 56": - 1.76 x lo4 (9.34) -2.93 x l o2  (3.66) -4.89 x 10 (1.44) -2.04 x lo-' (0.695) 

TABLE 2. The dimensionless frequency and (in brackets) the distance s* in solar radii beyond which 
reflection becomes negligible, for four wave periods and three angles q5 of the magnetic field to the 
radial direction 

approximately half the distance from the sun to the Earth, 1 = 7.48 x 10l2 cm. The 
condition h2 4 1, is thus met for local Alfven wavelengths not more than one-sixth the 
distance from the Earth to the sun, h < 1/3 = 2.49 x 10" cm, and this implies a wave 
period 7 < h / A ,  where A is the AlfvCn speed. The latter varies considerably between the 
corona and the Earth because: (i) the particle density decays from No = 5 x 10' cm-3 
to Nl = 15 cmP3 implying, for a proton mass m = 1.67 x lopz4 g, mass density decaying 
from po = N o m  = 8.35 x g cm-3 to p1 = N l m  = 2.50 x g cmP3; (ii) the 
magnetic field decays from B = 12 G to B, = 5 x G, faster than the square root of 
mass density pli2,  and thus the Alfven speed decays from A ,  = Bo/(4np,)1/2 = 
1.17 x 10' cm s-', to A ,  = B,/(4~p,)l /~ = 2.82 x lo6 cm s-l, with a geometric mean 
A ,  = (AoA,)1 /2  = 1.82 x 10' cm s-l. Thus the approximation holds for periods up to 
7, < h/Ao  = 2.13 x lo4 s = 5.91 h at the corona, or up to 7, < h / A ,  = 8.85 x lo5 s = 
10.2 days at the Earth, with 72 < h / A ,  = 1.37 x lo5 s = 1.59 days as the geometric 

mean. Thus we consider four wave periods of interest in the solar wind, namely 1 s, 
1 min, 1 h and 1 day, and three angles of the magnetic field to the radial direction: 
4 = 0", 28", 56", and indicate the nine corresponding values of (i) the dimensionless 
frequency (56b) and (ii) the distance s, = R, 52-0.229 in solar radii (69), beyond which 
wave reflection becomes negligible, and the spectrum does not change any more. These 
are listed in table 2. 

7. Discussion 

form, normalized by their initial value at s = so: 
We plot the velocity (81 a)  and magnetic field (81 b) perturbations, in dimensionless 

V+(R) - = RHrr ')(R-'.* Q ) / H S ,  "(a), (88 a)  
H+(R) - = R-5.4HF92) (R-4.4 52)/Hp~z)(52), (88 b) 

V =  6: 1V1 = lVkl, arg (V,) = arg(V) = -arg(V-), (89 a)  
H = H+: [HI = I f f + [ ,  arg(H+) = arg(H) = -arg(H-). (89 b) 

for an outward 
and opposite phases : 

or inward H ( l )  propagating wave, which have the same amplitudes 

The general solution (62b) is a linear combination of inward and outward propagating 
waves, with amplitudes C ,  specified by boundary conditions. The distance is 
normalized by dividing by the initial distance (or solar radius) : 

(90) 
The only parameter is the dimensionless frequency (56b) : 

Q = Q, Isec2$l, 52, = sow/va,  (91 a, b) 
to which we give six values: 

(92 a)  

1 < R = s/s, = r / r o  d 215. 

-ao = 3 x 3 x io-1,3,3 x 1o,3 x 102,3 x 103, 
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FIGURE 2. Modulus of velocity perturbation (SSa), (SSu), normalized by the value at the solar 
surface, versus radial distance normalized by solar radius, for AlfvCn waves, propagating along a 
logarithmic spiral: (a) making an angle 4 = 45" with the radial direction, for five values of 
dimensionless frequency; (b)  for fixed dimensionless frequency 0, = - 3  and five values of spiral 
angle. 

corresponding respectively to periods T = 2n/w = -27cRa/vaSZo = 1.83 s, 18.3 s, 
3.06 min, 30.6 min, 5.09 h, 2.12 days, in the case of the solar wind; we also give six 
values to the angle of the spiral with the radial direction: 

We take as baseline case t92b) $ = 0,15", 30°, 45", 60", 75". 

corresponding to a period of 3.06 min and an equilateral spiral and vary each of the 
two parameters (92a, b) in turn. Thus we separate the effects of angle of the spiral 
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FIGURE 3. As figure 2 but for the phase difference of the velocity perturbation 
measured from the solar surface. 

magnetic field 4 and the stratification by presenting pairs of plots, one in which 4 is 
fixed and 51, varies, and vice versa in the other. The separation of the wave fields, both 
for the velocity and magnetic field perturbations, into amplitude and phase also helps 
to visualize the effects of spiral angle and stratification. 

Figure 2 shows the modulus of the velocity perturbation (89a), normalized by the 
initial value (88a), at the solar surface r = R, versus radial distance to the Earth, also 
normalized (see (90)): it applies both to outward Hf) and inward H r )  propagating 
waves. It is seen that the wave amplitude increases outwards, as density decreases, and : 
(i) for a fixed spiral angle (figure 2a), the amplitude is larger for higher frequency; (ii) 
for fixed dimensionless frequency (figure 2b), the amplitude is larger for greater spiral 
angle, i.e. longer distance of propagation. The first effect is more pronounced, in the 
sense that it causes a greater spread of amplitudes. The phase difference of the velocity 
perturbation (88a) between an arbitrary radius and the solar 'surface' has opposite 
signs (89a) for inward and outward propagating waves. If the exponent v in (54a) were 
positive, v > 0, the phase change would increase with distance, as can be confirmed in 
the case of a radial magnetic field (Campos 1994); since the exponent is negative in the 
present case, (88a), phase changes decay with distance, i.e. the phase tends to a 
constant value in figure 3 in all cases. Since most of the phase change occurs within a 
few solar radii, we have plotted the phases (figures 3 and 5 )  over 4 solar radii, instead 
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FIGURE 4. As figure 2 but for modulus of the magnetic field perturbation (88b), (89b) 

normalized to value at solar surface. 

of over the sun to Earth distance of 215 solar radii for amplitude (figures 2 and 4); the 
dependent variable (amplitude or phase) is in a logarithmic scale in all cases. The phase 
of the velocity perturbation increases with dimensionless frequency (figure 3 a)  and 
spiral angle (figure 3 b), the former effect being more pronounced. 

The amplitude of the magnetic field perturbation normalized by the value at the 
solar surface (88b), is the same, (89b), for inward and outward propagating waves, and 
decays with radial distance (figure 4); this contrast with the velocity perturbation, 
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1 O - ~ X  
1 2 3 

R 

which increases in amplitude with radial distance (figure 2), is related to the 
equipartition of kinetic and magnetic energies (79 a) ,  which holds at large distances. 
From pV2 - pH2/8rt  it follows that H - and since the square root of mass 
density of the medium decays faster (exponent v- 2 = - 6.35 in (76)) than the velocity 
perturbation of the AlfvCn wave increases (exponent 1 - v / 2  = + 3.19 in table l), the 
magnetic field perturbation of the Alfvtn wave decays with distance. The decay is more 
rapid for increasing frequency (figure 4 a )  and spiral angle (figure 4 b ) ,  with the effect 
of the former being more pronounced. The frequency (figure 5a) also has a more 
pronounced effect than spiral angle (figure 5b), for the phase change of the magnetic 
field perturbation between the solar surface and arbitrary radius. The evolution of 
phases is broadly similar for the velocity (figure 3) and magnetic field (figure 5) 
perturbations of the AlfvCn wave, whereas it is opposite for the amplitudes (figures 2 
and 4 ) .  

We conclude the illustrations with plots (figure 6) of spiral coordinate curves for the 
five cases considered for the amplitudes and phases of the velocity and magnetic field 
perturbations of Alfven waves. We start (figure 6a) with the case $ = 45", where both 
sets of logarithmic spirals (figure 1) make the same angle (in modulus, and with 
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(b) 

FIGURE 6 .  Orthogonal logarithmic spiral coordinates where one set of spirals makes an angle with the 
radial direction equal to: (a) $ = 45", (b)  $ = 30", and (c) $ = 15", and ten coordinate curves are used 
for each coordinate. For ( d )  we take $ = 15" as in (c), but with five curves of one coordinate and 15 
of the other. 

opposite signs) with the radial direction. The case (figure 6b) of one set of spirals 
making an angle q5 = 30" with the radial direction is the mirror image of = 60"; 
similarly the cases q5 = 15" (figure 6c) and q5 = 75" are also mirror images. In the first 
three plots (figure 6u-c) ten coordinate curves were drawn for each coordinate, giving 
a symmetrical appearance for q5 = 45", and becoming more unsymmetrical for q5 = 30" 
and q5 = 15", as one set of coordinate curves curls more and the other less; this gives 
the impression (in figure 6 c)  of coordinate curves of one set closer together than those 
of the other set, although in fact the number is the same (ten for each). In figure 6 ( d )  
the two sets of coordinate curves appear almost equally spaced for q5 = 15", because we 
have plotted 15 curves of the set a(q5 = 15") and only 5 of the orthogonal set 

The present paper contains a solution of the Alfven wave equation in a magnetic 
field which varies both in strength and direction, and in an inhomogeneous medium as 
well, as required by (magnet0)hydrostatic equilibrium; other solutions in inhomo- 
geneous media under non-uniform magnetic fields appear in the literature (Whang 
1973; Velli 1993; Oliver et al. 1993; Lou 1994). The AlfvCn wave equation was first 
obtained (AlfvCn 1942, 1948) for a homogeneous medium under a uniform magnetic 
field, followed by the extension to a plane parallel atmosphere under a uniform 
magnetic field (Ferraro & Plumpton 1958, 1963; Hollweg 1972, 1978; Leroy 1980; 
Campos 1983~1, b, 1987) and to magnetic flux tubes (Roberts 1981; Spruit 1982). 
Dissipative effects have been considered in homogeneous media (Cowling 1960; 

P(q5 = 75"). 
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Moffatt 1978) and atmospheres, the latter using the phase mixing approximation 
(Heyvaerts & Priest 1983; Nocera, Leroy & Priest 1984) or exact solutions (Campos 
1983c, 1988, 1989, 1993a, b). Mean flow effects have been included using the ray 
approximation (Belcher 1972; Whang 1973; Hollweg 1973; McKenzie, Ip & Axford 
1983). Alfven waves with the Hall effect illustrate well the difference between 
homogeneous media (Lightill 1959), and inhomogeneous media treated in the ray 
approximation (McKenzie 1979), or by means of full wave solutions, the latter with 
uniform (Campos 1992) and non-uniform (Campos & Isaeva 1993) magnetic fields. 
One of the motivations for these studies has been the observation of Alfvtn waves in 
the solar wind (Belcher 1971 ; Denskat & Burlaga 1977). 

The authors gratefully acknowledge the benefit of comments made by the referees. 
The work was started while the first author was Alexander von Humboldt Scholar at 
the Max-Planck Institut fur Aeronomie. 

Appendix. On conformal coordinate systems 

anaIytic function : 

in terms of Cartesian (x, y )  or polar ( r ,  6) coordinates : 

We define a conformal coordinate system (a,/?) as one specified by a complex 

w = /3+ia, w =f(z), (A 1 a, b) 

(A 2 4  b) 

(A 3 4  b) 

(A 4) 

Jd11' = s'{((da)'+(d/?)'}, s = l/lf(z)l, (A 5a, b) 

where the scale factor is the inverse of the modulus of the derivative of the function. 
Note that, since the functionflz) is holomorphic: (i) the derivativef(z) exists; (ii) it is 
independent of direction. This proves that for a conformal coordinate system the scale 
factor is the same for both coordinate curves. This is a consequence of the fact that a 
conformal transformation preserves angles, i.e. all lengths are multiplied by the same 
factor in every direction. 

Spiral coordinates are the particular case of conformal coordinates specified by 

z = x+iy = reie. 

The arclength in Cartesian or polar coordinates : 

becomes 

in conformal coordinates 

(dl)' = ldz1' = (dx)'+ (dy)2 = (dr)2 + 
ldz1' = If'(z>l-' ldwI2 

w = (1 -ik)logz =f(z). 

p+ia  = (l-ik)(logr+iO), 
Using (A 1) and (A 2b): 

we obtain the direct spiral coordinate transformation (4a, b). The inverse of (A 6): 

z = exp {w/( 1 - ik)}, 

leads through (A 1) and (A 2b): 

reie = exp{(/?+ia)(l +ik)/(l +k2)} ,  

to the inverse spiral coordinate transformation (14). The derivative of (A 6): 

f ( z )  = (1 -ik)/z, (A 10) 
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s = 1z1/11 - ikl = Y/( 1 + k2)”’, 

as in (1 8) ; substitution of (A 1 1) into (A 5 a )  yields the arc element in spiral coordinates 
(15). 
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